Team: Reza Torbati, Shubham Lohiya, Shivika Singh, Meher Nigam
conda create -n MARBLER python=3.8 && conda activate MARBLER
.
pip install -e .
in this directorypython3 -m robotarium_gym.main
to run a pretrained modelrequirements.txt
from protobuf==3.6.1
to protobuf
wheel
to 0.38.4setuptools
to 65.5.0einops
and torchscatter
python3 src/main.py --config=qmix --env-config=gymma with env_args.time_limit=1000 env_args.key="robotarium_gym:PredatorCapturePrey-v0"
robotarium
is False, real_time
is False, and show_figure_frequency
is large or -1 in the environment’s config.yaml
env_args.time_limit<max_episode_steps
, EPyMARL will crash after the first episodeIf you use this in your work please cite:
R. J. Torbati, S. Lohiya, S. Singh, M. S. Nigam and H. Ravichandar, “MARBLER: An Open Platform for Standardized Evaluation of Multi-Robot Reinforcement Learning Algorithms,” 2023 International Symposium on Multi-Robot and Multi-Agent Systems (MRS), Boston, MA, USA, 2023, pp. 57-63, doi: 10.1109/MRS60187.2023.10416792.
S. Wilson, P. Glotfelter, L. Wang, S. Mayya, G. Notomista, M. Mote, and M. Egerstedt. The robotarium: Globally impactful opportunities, challenges, and lessons learned in remote-access, distributed control of multirobot systems. IEEE Control Systems Magazine, 40(1):26–44, 2020.
Papoudakis, Georgios, et al. “Benchmarking multi-agent deep reinforcement learning algorithms in cooperative tasks.” arXiv preprint arXiv:2006.07869 (2020).